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The phenomenon of tidal evolution in the motion of planets in the solar 
system is studied using the many-parameter model of the linear theory of 
viscoelasticity. The planet is modelled as an almost spherical 
viscoelastic body whose centre of mass moves in an elliptical orbit. 
The method of averaging is used to obtain the equations describing the 
evolution of plane rotational motion in the non-resonant and resonant 
cases. The limiting angular velocity and conditions for the existence 
of a stable resonant rotation are obtained as functidns of the 
eccentricity and of the parameters characterizing the properties of the 
material of the planet. The ranges of variation of these parameters for 
which the results agree with those obtained earlier on the basis of the 
hypotheses concerning the structure of the momentum of tidal forces /l, 
21, or by using the Kelvin-Voigt model for the planet material and 
introducing additional assumptions about its properties /3, 4/ are 
indicated. 

1. Let us consider a homogeneous isotropic viscoelastic body (a planet) of density P 
made of material with the following properties: Poisson's ratio v is independent of time, 
and the constitutive relations of the linear theory of viscoelasticity under small defor- 
mations /5-7/ are given in the form 

) (I-1) 

Here akkt elk and Sijr ei,(i,j = 1,2,3) are the spherical parts and components of the 
stress and deformation tensor deviators, respectively, 
the viscoelastic properties of the material and 

E and q are constants characterizing 
p(t- &) is the relaxation function which 

can be written in the form /5/ 

(1.2) 

where G,,q are material constants determined experimentally. 
Let O&J&~ be the inertial coordinate system with origin at the centre of attraction, 

and let the centre of mass C of the planet describe an elliptical orbit about the point 0 
with eccentricity e, lying in the plane %&I 
meter). 

(the O& axis is directed towards the peri- 
Let us attach to the plant a "mean" system of coordinates crir*r, in accordance 

with the conditions (see e.g. /8/) 

~u(r,t)pd.%=O, JrXu(r,t)pdz=o, ax=ax,&!&* 

where r = (ri,%,rg)T is the radius vector of the point of the undeformed body, and 
is its displacement. 

u (rr t) 
Here and henceforth the integration will be carried out over the region 

occupied by the body in its undeformed state. 
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introduce the following notation: R =OC, 0 is the angular velocity of the trihedron 
y = R I R I-‘, and a, is the projection of the vector a on the et, (i = f,2,3) axis. 

We will assume that the motion of the centre of mass of the planet is independent of the 
motion about the centre of mass itself. Then 

where w is the gravitational constant, 00 is the orbital angular velocity of the centre of 
mass in averaged motion, and 6 (G is the true anomaly: 

(1.3) 

The potential energy of gravitational forces can be written, apart from terms (t/R)* (L is 
the characteristic dimension of the planet) in the form 

Let us construct a system of equations describing the notion of the axes CX~X+E, and 
the deformation of the planet. 

The variation in the principal angular momentum relative to the centre of mass is 
described by 

K'+wxK=M 

K=S(r+u)X(OX(F~U)-tU.)pdx 

M=yXgrad,n 

(1.4) 

and we write the equations of motion of the continuum in the form 

U,” =I p-'U*j,j + F* 
F=-o~(a,~(r+u))-~~x(r+u)-2~xu'-p-~grad.~ 

(1.5)* 

where Uij is the stress tensor and F is the mass force field. The boundary of the body is 
stress-free. 

The system (1.3)-(1.5) is closed by the kinematic Poisson's equations. 

2. Let us assume that the period of free elastic oscillations of the planet and the 
time of their decay are much smaller than the period of rotation of the centre of mass along 
the orbit. We introduce a small parameter e(O< se*). If 9, is the lowest frequency of 
free elastic oscillations (n ~0, p(t- E)=% then e = (o&)*. 

Let us put in (1.1) and (1.2) 

The quantities I@ \ and Wd are assumed to be of the same order. The assumption that 
Poisson's ratio is constant enables us to seek the displacements in the form /5/ 

where U,(r) are the characteristic forms of elastic oscillations. 
Let us substitute the series (2.2) into (1-Q) and (1.5) and make the change of variables 

Pn = aq,* (u (r, 1) = eu* (P, t)). This yields a system of singularly perturbed integrodifferential 
Volterra-type equations. It can be shown that an asymptotic form can be constructed using 
the method of boundary functions /g/. Meglecting the exponentially decaying past (with the 
exponential index of the order of 8-l) of the asymptotic expansion of the boundary layer-type, 
we find that the equations for determining q,,* (taking into account the terms in so), 
describe a quasistatic process of deformation. We shall further assume that the surface of 
the planet is nearly spherical and has the following form in spherical coordinates: 
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r = ro + ef bfJ, 11) (2.3) 
where f is a function whose explicit form will not be needed in what follows. 

Using the algorithm for constructing the asymptotic expression /lO/ for a surface of 
the form (2.3). we find that the displacement field represents, within the limits of accuracy 
in e, a displacement field of a viscoelastic sphere of radius ro. 

The planet may move such that the Cz, axis of the "mean" coordinate system is orthogonal, 
at all times, to the plane of the orbit /8/. Eq.(1.4), taking the terms linear in e into 
account, then takes the form 

0,' = 3 “w ylya - +( e,, -$ y l ((u’, v) r + (r.’ v) u’) P dz + (2.4) 

--$~(u*x(~xr)+rx(~xu*))pd~+ 

ox ((u*x(wxr)+rx(mxu*))pdz) 
s 

where A, B, C are the principal central moments of inertia of the undeformed body, es is the 
unit vector of the axis Cz,, and the quantity (A - B)IC = O(e). 

Let us denote by 'pi the angle between the axes CZ, and CE, of the "mean" and the 
K&ig coordinate systems. We then have 

y1 = cos(cp, -9). yB = -sin(cp, -V, YS = 0 

0, = 0, co* = 0, 03 = cpi’ 

When e = 0, (2.4) yields 'pi' = con&, and such a motion 
for determining the displacement fzeld. 

We shall seek the solution of the quasistatic problem of 
elastic sphere, using the principle of correspondence between 
problem /5, 6/. To do this we replace the shear modulus G in 
elastic displacement in time, by 

G,=E+?s+ & 
!I=1 

where s is the transformation parameter. Then using the relation /6/ 

+y&_ 

I=1 

(Cl, 6, are dimensional positive constants) and calculating the original, we obtain 
_.__ - . 

represents a generating motion 

the deformation of a visco- 
the elastic and viscoelastic 
the Laplace transform of the 

displacement field of the viscoelastic problem. 
The solution of the quasistatic problem of the deformation of the elastic planet 

has the form /3/ 

w = w1 + w* + w3 

WI = Jg- w* (r), w2 = - & o;‘w* (0,r) 

bP(l-2~) 
W3=-R3G21q2-V) 

3-v [~~--~o~] r 
1+v 

Y 
sin (cpl-iY) cos(q$-q 0 

0, = 0 0 1 
co5 (I& - 6) -sin(cp,--6) 0 Y 

w*(p) = [(&r& B, + (B,r, r) B, + B,] r 

BI = diag {b,, bl, 41, B, = diag (1, 1, O), 
B, = diag (0, 0, I), 

B, = diag {a,, a,, ~1 
& = diag {c,, c~, c*} 

ai = 2 (3 - q a (Y), a, = (1 + 3x9 a (v) 
bi = - (4 - 3v - 5v*) a (v), b, = - (9 - 8v - 5~“) a (y) 

& (v) = vii (1 - v)-’ (5v + 7)-’ 

(2.5) 

the 

(w (r, 0) 

(2.6) 

r,'(12--8v- 12v') 
c~='(l+v)(35-~Ov-25v*)' 

ro'(3+ 18v--3v'-10v~) 
c, = - (1 -i-v) (35 - iuv -25V') 
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In determining eu*(r,t) we shall require the expressions 
in e): 

(1 + ecos6)~cos28= 2; #~+(e)cosk@& 
x=0 

(1 + ecos6fSsin26 = $Oili-(e)sin kw,t 

fkf (e) = (1 - es)' (@k te) & O-k le)) 

!! 

(fk* (4 are power series 

(2.7) 

Using the correspondence principle and taking (2.51-(2.7) into account, we obtain the 
displacement field of a viscoelastic sphere. After substituting su*(r,t), we can write (2.4) 
in the standard form 

'p; = 2, cpp' = mot i = eF* Gfk cp,, 2) 
(2.f9 

where sF* is the part of expansion of the right-hand side of Eq.(2.4) linear in 6, solved 
for @a = z'. 

3. Let us average the third equation of (2.81 over the "rapid" variables cp, and gr,. 
We obtain the equation (here and later, in the final results,we shallmake the reverse sub- 
stitution eu* =u) describing the evolution of the rotational motion of the planet in the 
resonant case 

k, = "/,ooWY j {t(h - al) txl’ - $1 i- (6, - a,) X0' -I- % - ~1 X 

(xl* $ x2) f 2 (a, - a, -I- h - 4) +Q) dx > 0 

We shall seek the positions of equilibrium 2* of Eq.(3.1) (the stationary rotations of 
the planet with angular velocity WQ =z,J in the form of a series in powers of the eccen- 
tricity 

m 

Let us substitute the expansion (3.2) into the right-hand side of (3.1). Expanding in 
series and equating the coefficients of ek (k = 0, 1, . . .), to zero, we find that the position 
of equilibrium is unique. Taking into account the first terms in expansion Q)k (e) /I, 11/, 
we obtain the coefficients 

ao=l, a, =o, a, = 6X;%,, a, -6 (3.3) 
a,=l/&1(252, f 578X,-~Ooc&) 

An analysis of Eq.(3.1) in the neighbourhood of the position of equilibrium I* showed 
that it is asymptotically stable. Thus the angular velocity tends, in the process of evolution 
to a stationary value of ;r,. 

Putting &i = 0 (the Kelvin-Voigt model) and assuming that 

61 = XC&, d, = con& x - e&, II% < 6 < 1 f3.4) 

we obtain the model used in /3-51'. Under the assumptions made here and taking into account 
the terms linear in x, we obtain from (3.2) and (3.3) an expansion in powers of the eccen- 
tricity, of the known expression /2/ for the limiting angular velocity obtained under the 
assumption that the lag angle of the "tidal bulge" is proportional to the angular velocity. 

4. In the course of evolution the trajectories of system (2.8) intersect the resonance 
surfaces (in one-dimensional x space the resonance surface is a point) 

2X--_mw,=O,m~Z 

I 



We introduce, in the neighbourhood of the resonance, new variables 

/12/ 
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given by the formulas 

Let us average the second and third equation of (4.1) over the rapid phase q%, and write 
the resulting system in the form of a single second-order equation 

describing the evolution of rotational motion of the planet in the neighbourhood 
resonance. 

If the inequality 

(4.2) 

of the 

(4.3) 

holds, then Eq.(4.2) will have two SingUlaritieS. The inequality (4.3) represents the con- 
dition for the existence of a resonancerotation of the planet with angular velocity 03 = '/$n%. 

Analysing the singular points of Eq.(4.2) we find that one of them is a saddle, and the 
other is a focus. When the inequalities (4.4) hold, the focus is asymptotically stable, 
otherwise it is unstable. 

7 *,1(C)&& (dq:l;;;:;;e~)' >o (4.4) 
&Z t* 

In the course of the evolution of the rotational motion of the planet, its angular 
velocity reaches its resonance value. On approaching resonance we find that three qualitat- 
ively different cases are possible depending on the parameters of the orbit and the parameters 
characterizing the properities of the material: 

a) the inequality (4.3) holds with the opposite sign and "capture" into resonance is 
not possible; 

b) condition (4.3) holds and inequality (4.4) holds with the opposite sign; the "prob- 
ability of capture" /l/ into resonance is equal to zero; 

c) conditions (4.3) and (4.4) both hold and some of the trajectories are captured into 
resonance, since in this case Eq.(4.2) has an asymptotically stable singularity. 

In cases b) and c) two trajectories exist, tending in each case to an unstable and a 
saddle-type singularity (separatrices). 

5. Let us compare the results obtained here with the well-known results in /l-4/. 
The tidal moment (<T)) averaged over time, according to Darwin's theory, has the form 

/l/ 

{T) =-k, 2 @,z(e)sin6(2r- ko,), k, = const 
k=-m (5.1) 

where o(W) is the lag angle of the tidal component of the frequency (t). The two, normally 
used models for 6(o) have the form fl, 21 

sin6- 6- k'o. k' = const (5.2) 
sin 6 N k" sign 0. k” : const (5.3) 

In our case the tidal moment averaged over time is given by the right-hand side of Eq. 
(3.1). Comparing the quantities (5.1) and (3.1) we see that in the present case 

We note that relations (5.2) and (5.31 can be regarded as assumptions, while 
obtained from the exact solution of the quasistatic problem of the deformation of 
elastic sphere. 

If we put 61 =&l= j,..., kf i-1 in (5.4) (as in (3.411, then taking into 

(5.4) 

(5.4) was 
a visco- 

account 
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terms linear in K we obtain a model equivalent to (5.2). 
The parameters cl, 61, M can be chosen in such a manner (e.g. using the method of 

least squares) that the quantity (5.4) will approximate, within the interval of angular 
velocities used here, the signature model (5.3) with a high degree of accuracy. 

The model of the material used here is compared with the models used in /3, 4/ in Sect.3. 
Thus the existing models of tidal phenomena can be obtained by choosing the parameters 

determining the properties of the material in the many-parameter model of viscoelasticity 
discussed here. 

The author thanks A.O. Markeyev for discussing this paper. 
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